Category Archives: H2 Fluxes @ Harvard Forest

I measure the flux of H2, both above and below the temperate forest canopy at Harvard Forest in central Massachusetts, with the goal of contributing to our understanding of the significant microbial soil sink for atmospheric hydrogen.

Manuscript published on flux-gradient methods for ecosystem H2 flux measurements

A manuscript I’ve been working on entitled “Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods,” was now been published in Atmospheric Measurement Techniques (view paper online). Our goal was to present a detailed experimental approach for measuring ecosystem fluxes of H2 and to test different so-called “flux-gradient methods” for calculating the H2 fluxes. Some common trace gas flux methods, e.g. eddy covariance, are not available for species like H2 that cannot be measured precisely at high frequencies (<1 Hz). We hope this paper will help inform the design of future studies for which flux-gradient methods might be the best option for measuring trace gas fluxes.

Here are a couple videos on the instrument deployment and design for more information.

H2 fluxes were measured at Harvard Forest, MA

H2 fluxes were measured at Harvard Forest, MA

BioDesign course – bridging science and art

Biologist/architect team Tobi Lyn Schmidt and Mike Bogan created a course linking artists, designers, architects, and biologist from the California College of the Arts (CCA) and Stanford University. I served as a postdoc mentor to help inspire and guide the process of cross-hybridizing biology and design (some examples) with three really talented undergraduate CCA students: Leslie Greene, Sakurako Gibo, and David Lee.

The students were first charged with creating designs to illustrate scientific concepts in my field of research. I challenged them think about the issue of scale with respect to the biogeochemical cycles I study. The processes I investigate occur over a wide range of spatial and temporal scales, which is a challenge for their measurement and interpretation. David focused on a selection of atmospheric trace gases with a wide range of abundances, and that interact with each other through key reactions. In his image, the hydroxyl radical (OH) is illustrated by the white dot from which orange and blue strings respectively represent the path length to molecules of  hydrogen (H2) and methane (CH4) in the surrounding space. The density of the strings is representative of the concentration of H2 and CH4 relative to OH. I love the sense of competition in this image. These reduced molecules compete for reaction with OH, and with other trace gases not shown, which helps explain the relatively their long lifetimes of H2 (~2 years) and CH4 (~10 years) in the atmosphere.

Concentration Burst, by David Lee

Concentration Burst, by David Lee

The second task for the students was to manipulate a biological system for design or artistic ends. All three students visited the Welander geobiology lab at Stanford and the Berry lab at Carnegie on campus where atmospheric trace gases are measured. For her project, Leslie was interested in manipulating microorganisms to reveal art. Using a combination of strains from the lab and purchased online, Leslie created competitive interactions between organisms and against antibiotics to reveal structures that were both patterned and complex. In the example below, she laid a cross-pattern of Streptomyces ghanaensis and Bacillus subtilis colonies and let them grow and compete. Intriguing features arose, appearing as if the Streptomyces strain grew on top of the Bacillus strain, perhaps antagonistically or not. Leslie overlaid emergent patterns in topology and color from microbial cultures with and without competition to create an amazing image that reveals some very aesthetic order in the systems.

Bio-manipulation of Streptomyces ghanaensis and Bacillus subtilis

Bio-manipulation of Streptomyces ghanaensis and Bacillus subtilis

Emergent patterns from competition

Emergent patterns with and without competition

 

Finally, the students illustrated various concepts related to my work including artistic renditions of Streptomyces colonies and concepts of complexity (see related post). I really love the feel of the image created by Sakurako Gibo showing the atmospheric H2 concentrations that I measured between the ground and top of a measurement tower (y-axis) over the year-long experiment (x-axis) at Harvard Forest as an ephemeral curtain. Higher concentrations of H2 are represented with a deeper intensity of blue. The impact of the soil sink is illustrated by the lightening of the color near the base of the image caused by high rates of soil microbial H2 consumption in summer and fall.

Curtain of H2 Harvard Forest

Curtain of H2 at Harvard Forest, by Sakurako Gibo

 

Thesis Defense!

I defended my thesis entitled “Field Measurement of the Fate of Atmospheric H2 in a Forest Environment: from Canopy to Soil” on October 4, 2012.

It was an incredible relief to finish the thesis document itself (link to .pdfCarl-Gustaf Rossby Prize for best PhD thesis in PAOC for the year). I really enjoyed preparing and giving my thesis defense presentation. It’s not often that one gets to present the culmination of six years of hard work and personal development to colleagues, family, and friends. I am grateful for mentorship from my advisor Ron Prinn, my thesis committee (Steve Wofsy – Harvard, Bill Munger – Harvard, Tanja Bosak – MIT, Colleen Hansel – WHOI, Shuhei Ono – MIT), and many others along the way!

I am continuing at MIT for a short (approximately 9 month) postdoctoral position with Ron Prinn to translate the work described in my thesis to publications. I am currently exploring possibilities for a postdoctoral position at the intersection of microbial ecology and atmospheric chemistry (trace gas cycles or aerosols) by searching advertised positions and writing fellowship proposals.

Feature in EAPS article: Atmospheric chemistry redux

Atmospheric Chemistry Redux

MIT Department of Earth, Atmospheric and Planetary Science article describing the expansion of the atmospheric chemistry program at MIT over the past five years with a short feature on our work to understand the H2 soil sink in the field and in the lab.

PAOC spotlight video

PAOC Spotlight: Back to the forest Video

Micro-organisms have produced dramatic shifts in the composition of the Earth’s atmosphere and continue to be important drivers of ocean- and land-atmosphere exchanges of gases that have a strong influence on atmospheric composition and climate. An interesting example is the microbial influence on atmospheric molecular hydrogen (H2), which dominates the fate of this gas in the atmosphere. H2 is emitted to the atmosphere by about half natural and half anthropogenic, or human-induced, processes but it is predominantly removed from the atmosphere by microorganisms in the soil, which makes this process the most important, yet least understood, player in the atmospheric H2 budget.

In this video graduate student Laura Meredith shares her thesis work to build and deploy an instrument to the Harvard Forest Long Term Ecological Research site in central Massachusetts. Laura is in the Climate Physics and Chemistry Program. Her advisor is Ron Prinn.

I survived the AGU 2011 Fall meeting

I just returned to Boston after the six weeks of travelling. My two weeks in California, filled with conferences and colleagues, was quite different from the intensive and somewhat isolated period spent in India.

Presenting my poster at AGU – one of 12,000+ posters

First stop was San Diego, where I attended the 44th Meeting of Advanced Global  Atmospheric Gases Experiment (AGAGE) Scientists and Cooperating Networks at the Scripps Institute of Oceanography in La Jolla. Anita Ganesan’s instrument in Darjeeling may pave the way for the first AGAGE site in India, so the crowd was eager to hear her describe our success in deploying her instrument. Her dedicated and diligent work is paying off as she is collecting some of the first high precision direct greenhouse gas measurements in India.

I gave a talk at the AGAGE meeting on my recent work on the flux of H2, CO2 and COS between the soil and atmosphere at Harvard Forest. I focus on the persistence of soil-atmosphere exchange of trace gases across snowpack, which insulates the soil microbial community from freezing air temperatures while allowing trace gases  to diffuse through the porous snow matrix. I’m interested in how strongly the biogeochemical cycling continues throughout the winter and in comparing the behavior of the different cycles in the low temperature ‘incubator’ beneath the snow. Continue reading

Porcupine takes over Harvard Forest EMS shed

The porcupine was first spotted in the fall during a lunch break at the Harvard Forest Environmental Measurement Site instrument shed. It continued to reside beneath the shed as was clearly evident by the snow tracks (or more like a trough) leading to a nearby chewed on balsam fir. I set up a crittercam to record the action, and have compiled a “best of” video of our porcupine waltzing through the snow…

Laura goes to Harvard Forest – instrument deployment

Deployment day!

Two years after embarking on my thesis project to design and build a custom instrument that measures hydrogen fluxes, I deploy my creation to the Harvard Forest Long Term Ecological Research site in Petersham, Massachusetts. The instrument shed is tight, but with the help of colleagues at Harvard University, the move is successful. In this short documentary by co-student Ryan Abernathey we introduce the forest and the project, but the work has only just begun…

Laura at Harvard Forest from Ryan Abernathey on Vimeo.